Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hoong-Kun Fun,^a* Yong-Miao Shen,^b Jian-Hua Xu^b and Suchada Chantrapromma^c‡

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

‡ Additional correspondence author, email: suchada.c@psu.ac.th

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study $T=100~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{Å}$ R factor = 0.032 wR factor = 0.084 Data-to-parameter ratio = 22.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Benzyl-4,5,6,7-tetrachloro-3-hydroxy-2-(3-hydroxypropyl)isoindolin-1-one

In the title compound, $C_{18}H_{15}Cl_4NO_3$, the isoindole fragment is slightly twisted and exhibits a propeller-like conformation. The dihedral angle between the isoindoline mean plane and phenyl ring is 59.47 (7)°. Intermolecular $O-H\cdots O$ hydrogen bonds link the molecules into chains running along the b axis. The crystal packing is further stabilized by weak $C-H\cdots O$ interactions.

Received 4 January 2007 Accepted 18 January 2007

Comment

Photoinduced electron-transfer reaction of phthalimides with alkenes has been an active research area in organic photochemistry (Griesbeck *et al.*, 1996; Kanaoka, 1978). In a continuation of our recent work on photoinduced reactions of 4,5,6,7-tetrachlorophthalimide with alkenes (Xue *et al.*, 2000), we investigated the photoreaction of 4,5,6,7-tetrachloro-*N*-(2-hydroxyethyl)phthalimide with 1-phenylcyclohexene, in which the title compound, (I), was obtained as one of the unexpected products.

In (I) (Fig. 1), all bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The isoindoline fragment (C1–C8/N1) is slightly twisted and exhibits a propeller-like conformation, with the largest deviation from the mean plane (*M*) of 0.063 (1) Å for atom N3. The dihedral angle between *M* and phenyl ring C10–C15 is 59.47 (7)°. The hydroxypropyl (C16–C18/O3) substituent is (–)-anticlinally attached at atom N1, with a C8–N1–C16–C17 torsion angle of –112.09 (14)°, while the benzyl (C9–C15) group is (–)-synclinally attached at atom C8, with a C8–C9–C10–C11 torsion angle of –88.07 (15).

Intermolecular $O-H\cdots O$ hydrogen bonds (Table 1) link the molecules into chains running along the b axis. The crystal packing (Fig. 2) is further stabilized by weak $C-H\cdots O$ interactions (Table 1).

Experimental

The title compound, (I), was synthesized by a photoinduced reaction between 4,5,6,7-tetrachloro-*N*-(2-hydroxyethyl)phthalimide (2 mmol) and an excess amount of 1-phenylcyclohexene (10 mmol)

© 2007 International Union of Crystallography All rights reserved

in a benzene solution (80 ml). It was isolated, as a minor product, using silica-gel column chromatography. Colourless block-shaped single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a petroleum ether/chloroform solution (1:1 ν/ν) (m.p. 488–489 K).

Crystal data

$C_{18}H_{15}Cl_4NO_3$	Z = 4
$M_r = 435.11$	$D_x = 1.569 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.8345 (2) Å	$\mu = 0.66 \text{ mm}^{-1}$
b = 9.9173 (2) Å	T = 100.0 (1) K
c = 18.7629 (3) Å	Block, colourless
$\beta = 113.983 \ (1)^{\circ}$	$0.37 \times 0.31 \times 0.28 \text{ mm}$
$V = 1842.00 (6) \text{ Å}^3$	

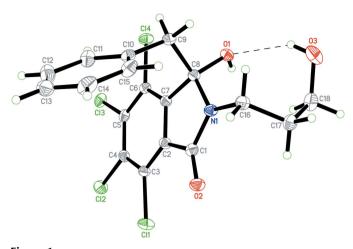
Data collection

Bruker SMART APEX2 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.792$, $T_{\max} = 0.835$ 36202 measured reflections 5374 independent reflections 4723 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.048$ $\theta_{\rm max} = 30.0^{\circ}$

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0393P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.032 & + 0.9751P] \\ wR(F^2) = 0.084 & where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$ \\ S = 1.06 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 5374 \ \mbox{reflections} & \Delta\rho_{\rm max} = 0.52 \ \mbox{e Å}^{-3} \\ \mbox{H-atom parameters constrained} & \Delta\rho_{\rm min} = -0.23 \ \mbox{e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).


$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$O1-H1A\cdots O2^{i}$	0.82	1.94	2.7569 (15)	175
$O3-H3A\cdots O1$	0.82	2.20	2.9284 (15)	149
$C9-H9A\cdots O3^{ii}$	0.97	2.51	3.4113 (17)	155
$C16-H16B\cdots O3^{ii}$	0.97	2.56	3.511 (2)	168

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 2, -y + 1, -z + 2.

Hydroxyl H atoms were located in a difference map and refined as riding, with O—H = 0.82 Å and $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm O})$. The remaining H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic and 0.97 Å for CH₂ H atoms, and with $U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C})$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

This work was supported by the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province. The authors also thank the Malaysian

Figure 1The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The dashed line indicates a hydrogen bond.

Figure 2

The crystal packing, viewed down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA), grant No. 304/PFIZIK/653003/A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version V7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Griesbeck, A. G., Henz, A. & Hirt, J. (1996). Synthesis, pp. 1261–1276.

Kanaoka, Y. (1978). Acc. Chem. Res. 11, 407-413.

Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Xue, J., Zhu, L., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8553-8557.